Abstract

This work is a continuation of previous investigations aimed at developing an innovative microfabricated air-cooling technology that employs an electrohydrodynamic corona discharge (i.e. ionic wind pump) [1], [2]. This technology enables the miniaturization of cooling systems for next generation electronics. Our single ionic wind pump element consists of two parallel collecting electrodes between which a single emitting tip is positioned. Two-dimensional (2-D) and three-dimensional (3-D) simulations using COMSOL Multiphysics™ are additionally employed to predict the temperature distribution, the flow field, and the heat removal capacity of the device in operation. One such model utilizes a small gap between collector and emitter electrodes and demonstrates an improvement in the COP (coefficient of performance) of a single device. Comparisons are made with experimental temperature data on an actual device. The purpose of this work is therefore to optimize the performance of a single microfabricated ionic wind pump to enable the development of an array of these elements for use in larger-scale heat transfer applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.