Abstract
Herein, a novel cost‐effective demand side management and peak power shaving are demonstrated by optimized scheduling of renewable energy source integrated grid‐connected hybrid microgrid and vanadium redox flow battery (VRFB) storage. To promote the waste to energy for the rural and urban communities, the biogas energy source is integrated along with the combined solar photovoltaic (PV) and wind energy sources. As a long life and scalable battery storage solution, VRFB storage is adopted for peak shaving and microgrid performance reliability. Power generation from the renewable sources, VRFB charge–discharge, and grid power usage are scheduled considering two practical electricity tariff profiles, thus making the overall microgrid system operation cost‐effective and efficient. The optimized cost of energy management is determined considering the operation and maintenance cost of energy source and battery storage, grid tariff profile, and power import and export. The performance of the overall control scheme is experimentally validated by a grid‐connected hybrid microgrid consisting of 10 kWp solar PV, 1 kW wind turbine, 15 kVA biogas engine generator, and 1 kW 6 h VRFB storage. The proposed energy management scheme is scalable and a generalized one that claims to be suitable for large‐scale renewable energy integrated power systems as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.