Abstract

BackgroundLarge-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption.ResultsA two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO2 (v/v). Once cultures reached the desired cell densities, which can be “fine-tuned” based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO3. This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO2 (v/v); further, biomass productivity (g L−1 day−1) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass−1) under the optimized conditions; biodiesel productivity (g FAME L−1 day−1) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO3 induced the highest TAG accumulation (% w/w), whereas Na2CO3 did not induce significant TAG accumulation. NH4HCO3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO3∙Na2CO3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate.ConclusionsThe strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in cultures of C. vulgaris, when compared to traditional culturing strategies, which rely on continuously sparging algal cultures with elevated concentrations of CO2(g). This work presents a two-phased, improved photoautotrophic growth and lipid accumulation approach, which may result in an overall increase in algal biofuel productivity.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0265-4) contains supplementary material, which is available to authorized users.

Highlights

  • Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2

  • Extractable lipids are defined here as intracellular lipids such as TAGs, free fatty acids (FFAs), monoacylglycerides (MAGs), or diacylglycerides (DAGs), which can be liberated from lysed cells using non-polar solvents

  • Competitive growth rates in microalgae cultures may only be achievable when elevated concentrations of dissolved inorganic carbon are present in the medium

Read more

Summary

Introduction

Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. The extraction and refinement of petroleum as a natural resource for fuel and specialty chemicals has enabled human innovation and led to unprecedented technological growth in industrialized nations; these technological advancements are not without cost. The current rate of producing enough crude petroleum to satisfy global demand has led to political, economic, and environmental controversy [1]. Industrial processes and the transportation sector currently contribute more than 29 billion tonnes of carbon dioxide to the atmosphere each year [3]. This is more than 400× the estimated rate of global carbon fixation by primary biota [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.