Abstract

Propagation velocity of seismic waves in heterogeneous VTI media depends not only on spatial location but also on their propagation direction, which leads to a much more complex dispersion relation than in isotropic media. As a result, designing implicit finite-difference (FD) schemes for wavefield extrapolation in anisotropic media through analytic Taylor-series expansion is more difficult. Implicit FD and Fourier finite-difference (FFD) schemes are developed for vertical transversely isotropic (VTI) media based on function fitting. The dispersion relation of VTI media is approximated with a rational function and its coefficients are estimated by weighted least-squares optimization. Because these coefficients are functions of Thomsen anisotropy parameters ([Formula: see text] and [Formula: see text]) and vary laterally in heterogeneous VTI media, they are calculated before wavefield extrapolation and stored in a table. Implicit FD and FFD schemes for VTI media are almost the same as for isotropic media, except that coefficients are looked up in a precalculated table. Impulse responses and relative dispersion-relation error show that accuracy of the FD scheme for VTI media is similar to its counterpart in isotropic media. Application to a synthetic data set showed that implicit FD and FFD can handle laterally varying VTI media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call