Abstract

Multiphase converters have become an attractive alternative for high-current power converters due to their inherent reduction of semiconductor stress. Additionally, total current ripple frequency can be increased and its amplitude decreased by the phases ripple interleaving. These converters require a different number of phases and control specifications depending on the application. A wide range of applications imposes challenging requirements in the control algorithm and its implementation, such as digital platforms and resources optimization. A previous proposal presented a current control algorithm developed to provide a solution to the highly demanding constraints present in high-power applications, where short settling times are required when fast transients in the current reference or the load voltage are present. This work presents the implementation of the above-mentioned algorithm and its optimizations, aimed to obtain a modular and efficient design. The proposed implementation and system scalability are evaluated by means of an experimental setup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call