Abstract

Double wall cooling is a very effective technique for increasing heat transfer in hot gas path components utilizing a narrow channel near the surface of the component. Multiple techniques exist to increase the heat transfer within the narrow channel, including the use of impingement jets, turbulators and microchannels. A preliminary study has been performed using computational fluid dynamics (CFD) to determine the heat transfer benefits of double wall cooling technology when compared to a smooth wall square channel and a ribbed wall square channel. Conjugate CFD simulations of flow through an aluminum channel were performed to include the effects of conduction through the solid and convection within the main channel. The design for the preliminary study consists of a square main channel and a narrow impingement channel connected by a series of holes creating impingement jets on the outer surface of the impingement channel. The study examines multiple parameters to increase heat transfer without increasing the pumping power required. The parameters studied include diameter of impingement jets, jet-to-jet spacing, number of impingement jets, and jet-to-wall spacing. Results show that the impingement channel height-to-diameter ratio has a strong impact on heat transfer effectiveness. This study also provides a new optimization methodology for improving cooling designs with specific targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.