Abstract

We have previously shown that DNA immunization with PspA (pneumococcal surface protein A) DNA is able to elicit protection comparable to that elicited by immunization with PspA protein (with alum as adjuvant), even though the antibody levels elicited by DNA immunization are lower than those elicited by immunization with the protein. This work aims at characterizing the ability of sera to bind to the pneumococcal surface and to mediate complement deposition, using BALB/c wild-type and interleukin-4 knockout mice. We observed that higher anti-PspA levels correlated with intense antibody binding to the pneumococcal surface, while elevated complement deposition was observed with sera that presented balanced immunoglobulin G1 (IgG1)/IgG2a ratios, such as those from DNA-immunized mice. Furthermore, we demonstrated that gamma interferon and tumor necrosis factor alpha were strongly induced after intraperitoneal pneumococcal challenge only in mice immunized with the DNA vaccine. We therefore postulate that although both DNA and recombinant protein immunizations are able to protect mice against intraperitoneal pneumococcal challenge, an optimized response would be achieved by using a DNA vaccine and other strategies capable of inducing balanced Th1/Th2 responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call