Abstract

Feature based steganalysis, an emerging branch in information forensics, aims at identifying the presence of a covert communication by employing the statistical features of the cover and stego image as clues/evidences. Due to the large volumes of security audit data as well as complex and dynamic properties of steganogram behaviours, optimizing the performance of steganalysers becomes an important open problem. This paper is focussed at fine tuning the performance of six promising steganalysers in this field, through feature selection. We propose to employ Markov Blanket-Embedded Genetic Algorithm (MBEGA) for stego sensitive feature selection process. In particular, the embedded Markov blanket based memetic operators add or delete features (or genes) from a genetic algorithm (GA) solution so as to quickly improve the solution and fine-tune the search. Empirical results suggest that MBEGA is effective and efficient in eliminating irrelevant and redundant features based on both Markov blanket and predictive power in classifier model. Observations show that the proposed method is superior in terms of number of selected features, classification accuracy and computational cost than their existing counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.