Abstract

Breast cancer is a grave concern among women due to its high mortality rate in women as compared to that in men. Mass, an early symptom of breast cancer, is difficult to detect due to its subtle nature. Mammography, an effective and most preferred screening technique, generally uses low-contrast images where identification of some of the mass lesions from surrounding normal tissues is a difficult task even for skilled radiologists. Therefore, to alleviate the issue, this paper introduces an effective computer-aided detection scheme based on a novel contrast enhancement scheme for mammograms to automate the localization procedure of mass cases. Hyperbolic tangent function, a simple yet effective method, is introduced as an enhancement transfer function whose adjustable parameter is optimized by the Tunicate swarm algorithm, a nature-inspired optimization algorithm, via fitness function. To minimize the false positives generated after the detection, the median robust extended local binary pattern, a texture-based descriptor, is introduced, which possesses the ability to capture both micro- and macro-structure information from an image patch. The analysis includes four classifiers: Fisher linear discriminant analysis, K-nearest neighbor, support vector machine, and an ensemble classifier in the feature-based classification for false positive reduction (FPR). The proposed approach of automatic detection of masses when verified using two standard databases, mini-MIAS and Digital Database for Screening Mammography, comprised 68 and 550 mammograms, respectively, achieved sensitivities of 95.3% and 94.1% with 0.36 and 0.40 false positives per image after false positive reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.