Abstract

BackgroundHighly purified infected red blood cells (irbc), or highly synchronized parasite cultures, are regularly required in malaria research. Conventional isolation and synchronization rely on density and osmotic fragility of irbc, respectively. High gradient magnetic separation (HGMS) offers an alternative based on intrinsic magnetic properties of irbc, avoiding exposure to chemicals and osmotic stress. Successful HGMS concentration in malaria research was previously reported using polymer coated columns, while HGMS depletion has not been described yet. This study presents a new approach to both HGMS concentration and depletion in malaria research, rendering polymer coating unnecessary.MethodsA dipole magnet generating a strong homogenous field was custom assembled. Polypropylene syringes were fitted with one-way stopcocks and filled with stainless steel wool. Rbc from Plasmodium falciparum cultures were resuspended in density and viscosity optimized HGMS buffers and HGMS processed. Purification and depletion results were analysed by flow cytometer and light microscopy. Viability was evaluated by calculating the infection rate after re-culturing of isolates.ResultsIn HGMS concentration, purity of irbc isolates from asynchronous cultures consistently ranged from 94.8% to 98.4% (mean 95.7%). With further optimization, over 90% of isolated irbc contained segmented schizonts. Processing time was less than 45 min. Reinfection rates ranged from 21.0% to 56.4%. In HGMS depletion, results were comparable to treatment with sorbitol, as demonstrated by essentially identical development of cultures.ConclusionThe novel HGMS concentration procedure achieves high purities of segmented stage irbc from standard asynchronous cultures, and is the first HGMS depletion alternative to sorbitol lysis. It represents a simple and highly efficient alternative to conventional irbc concentration and synchronization methods.

Highlights

  • Purified infected red blood cells, or highly synchronized parasite cultures, are regularly required in malaria research

  • We show that with further refinement, optimized High gradient magnetic separation (HGMS) results in unprecedented purities of segmentedstage irbc from standard asynchronous cultures

  • Sheath fluid for flow cytometry was from Becton Dickinson Bioscience (BDB) (San Jose, CA), all other reagents were from Sigma-Aldrich

Read more

Summary

Introduction

Purified infected red blood cells (irbc), or highly synchronized parasite cultures, are regularly required in malaria research. This study presents a new approach to both HGMS concentration and depletion in malaria research, rendering polymer coating unnecessary. Isolation of infected red blood cells (irbc) is a crucial step in basic and applied malaria research. A further refinement of this method are hypertonic, discontinuous Percoll®-sorbitol gradients, where particular fractions of irbc can be obtained. Hypertonicity causes cell shrinkage of rbc, while irbc swell back due to an influx of sorbitol through new permeability pathways. This increases the density gaps between the different developmental stages and allows better separation than in pure Percoll® gradients [4]. Gelatin sedimentation is used as an alternative concentration method, it is useful only for parasite strains exhibiting knobs [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call