Abstract

Background/Aims: To develop a suitable hepatocyte-like cell model that could be a substitute for primary hepatocytes with essential transporter expression and functions. Induced hepatocyte-like (iHep) cells directly reprogrammed from mice fibroblast cells were fully characterized. Methods: Naïve iHep cells were transfected with nuclear hepatocyte factor 4 alpha (Hnf4α) and treated with selected small molecules. Sandwich cultured configuration was applied. The mRNA and protein expression of transporters were determined by Real Time PCR and confocal. The functional transporters were estimated by drug biliary excretion measurement. The inhibition of bile acid efflux transporters by cholestatic drugs were assessed. Results: The expression and function of p-glycoprotein (P-gp), bile salt efflux pump (Bsep), multidrug resistance-associated protein 2 (Mrp2), Na+-dependent taurocholate cotransporting polypeptide (Ntcp), and organic anion transporter polypedtides (Oatps) in iHep cells were significantly improved after transfection of hepatocyte nuclear factor 4 alpha (Hnf4α) and treatment with selected inducers. In vitro intrinsic biliary clearances (CLb,int) of optimized iHep cells for rosuvastatin, methotrexate, d8-TCA (deuterium-labeled sodium taurocholate acid) and DPDPE ([D-Pen2,5] enkephalin hydrate) correlated well with that of sandwich-cultured primary mouse hepatocytes (SCMHs) (r2 = 0.984). Cholestatic drugs were evaluated and the results were compared well with primary mice hepatocytes. Conclusion: The optimized iHep cells expressed functional drug transporters and were comparable to primary mice hepatocytes. This study suggested direct reprogramming could provide a potential alternative to primary hepatocytes for drug candidate hepatobiliary disposition and hepatotoxicity screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call