Abstract
MoO3 is now utilized as a promising catalyst due to its high activity and favorable mobility at low temperature. Its spectral data and surface microstructures were characterized by Fourier transform infrared spectra (FT-IR) and Field emission scanning electron microscope (FESEM). Thermo-analysis of the carbon black was performed over nano-MoO3 catalyst in a thermogravimetric analyzer (TGA) at various heating rates and soot-catalyst ratios. Through the analysis of kinetic parameters, we found that the heat transfer effect and diffusion effect can be removed by setting lower heating rates and soot-catalyst ratios. Therefore, a strategy for selecting proper thermogravimetric parameters were established, which can contribute to the better understanding of thermo-analytical process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Chemical Reaction Engineering & Catalysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.