Abstract

Forming is limited for many modern materials due to their brittleness. Recent publications propose therefore partial heating of the forming areas, e.g., with laser technology, however, without asking how to minimize the applied energy. This work discusses such an optimization of the temperature distribution to save energy, to avoid unnecessary changes of the material properties, and to minimize thermally induced deformations. The findings are demonstrated on a statically determined quasi 1D‐problem, namely, 3‐point‐bending, and showed for a certain material law (modelling a dual phase steel of type DP1000) that the concentration of heat on the central line of the forming area is counter‐productive and that the necessary energy can be significantly reduced with a well‐defined heating strategy. Furthermore, we discuss how to extend the analysis to more complex problems which can be treated only numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.