Abstract

AbstractGyrosynchrotron (GS) emission of charged particles spiraling in magnetic fields plays an exceptionally important role in astrophysics. In particular, this mechanism makes a dominant contribution to the continuum solar and stellar radio emissions. However, the available exact equations describing the emission process are extremely slow computationally, thus limiting the diagnostic capabilities of radio observations. In this work, we present approximate GS codes capable of fast calculating the emission from anisotropic electron distributions. The computation time is reduced by several orders of magnitude compared with the exact formulae, while the computation error remains within a few percent. The codes are implemented as the executable modules callable from IDL; they are made available for users via web sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call