Abstract
This paper considers an optimized full state feedback (FSF) optimal controller for bulk power control of a 700-MW(electric) pressurized heavy water reactor (PHWR) that minimizes the controller norm to reduce the effect of disturbances. Lyapunov’s linear matrix inequalities (LMIs) have been considered for stability of the model. For the closed loop, these inequalities, which become nonlinear in the unknowns, are converted to LMIs by a suitable variable substitution. The controller’s optimization is achieved by minimizing the upper bound of the state feedback vector’s norm. As a result of this optimization, the controller gain is reduced, which reduces the effect of the disturbance input to the system. We study the stability of the closed loop system and the nonlinear transient performance using the state feedback. We demonstrate that the proposed controller’s transient performance is superior to that of a nonoptimized controller when compared to a conventional proportional-derivative controller. The designed controller has a norm that is about five orders lower than that obtained without optimization while still providing acceptable transient performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.