Abstract
Model predictive control (MPC) is an optimization-based strategy for high-performance control that is attracting increasing interest. While MPC requires the online solution of an optimization problem, its ability to handle multivariable systems and constraints makes it a very powerful control strategy specially for MPC of embedded systems, which have an ever increasing amount of sensing and computation capabilities. We argue that the implementation of MPC on field programmable gate arrays (FPGAs) using automatic tools is nowadays possible, achieving cost-effective successful applications on fast or resource-constrained systems. The main burden for the implementation of MPC on FPGAs is the challenging design of the necessary algorithms. We outline an approach to achieve a software-supported optimized implementation of MPC on FPGAs using high-level synthesis tools and automatic code generation. The proposed strategy exploits the arithmetic operations necessaries to solve optimization problems to tailor an FPGA design, which allows a tradeoff between energy, memory requirements, cost, and achievable speed. We show the capabilities and the simplicity of use of the proposed methodology on two different examples and illustrate its advantages over a microcontroller implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.