Abstract

Timber production forests can support diverse ecological communities, but existing conservation strategies fail to maximize this potential. While methods for limiting logging damage and locating biological reserves have been developed, strategies focused on the sequence and arrangement of harvest units are lacking, particularly for situations in which species-specific knowledge is limited. We present a new landscape-level approach to forest conservation that anticipates local extinctions and focuses on facilitating re-colonization via strategic spatiotemporal harvest plans (which are informed by species occurrence data only). As a proof of concept, we applied our framework to data from four tropical forest sites and found clear benefits of optimized spatiotemporal harvest plans relative to non-optimized harvest plans (random and three pattern-based plans). Our proposed approach, termed the Optimized Floating Refugia strategy, requires minimal species-specific knowledge and can be used to enhance existing conservation efforts (e.g. biological reserve establishment, reduced-impact logging). The approach effectively prioritizes logging-sensitive habitat specialists with restricted ranges and thus provides the largest benefits to the most extinction-prone species. This simple but novel method shows promise as a general strategy to improve biodiversity conservation in species-rich production forest landscapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.