Abstract

In this paper, we propose an optimized field/circuit coupling approach for the simulation of magnetothermal transients in superconducting magnets. The approach improves the convergence of the iterative coupling scheme between a magnetothermal partial differential model and an electrical lumped-element circuit. Such a multi-physics, multi-rate and multi-scale problem requires a consistent formulation and a dedicated framework to tackle the challenging transient effects occurring at both circuit and magnet level during normal operation and in case of faults. We derive an equivalent magnet model at the circuit side for the linear and the non-linear settings and discuss the convergence of the overall scheme in the framework of optimized Schwarz methods. The efficiency of the developed approach is illustrated by a numerical example of an accelerator dipole magnet with accompanying protection system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.