Abstract
Radiomics analysis of 18F-FDG PET/CT images promises well for an improved in vivo disease characterization. To date, several studies have reported significant variations in textural features due to differences in patient preparation, imaging protocols, lesion delineation, and feature extraction. Our objective was to study variations in features before a radiomics analysis of 18F-FDG PET data and to identify those feature extraction and imaging protocol parameters that minimize radiomic feature variations across PET imaging systems. Methods: A whole-body National Electrical Manufacturers Association image-quality phantom was imaged with 13 PET/CT systems at 12 different sites following local protocols. We selected 37 radiomic features related to the 4 largest spheres (17-37 mm) in the phantom. On the basis of a combined analysis of voxel size, bin size, and lesion volume changes, feature and imaging system ranks were established. A 1-way ANOVA was performed over voxel size, bin size, and lesion volume subgroups to identify the dependency and the trend change in feature variations across these parameters. Results: Feature ranking revealed that the gray-level cooccurrence matrix and shape features are the least sensitive to PET imaging system variations. Imaging system ranking illustrated that the use of point-spread function, small voxel sizes, and narrow gaussian postfiltering helped minimize feature variations. ANOVA subgroup analysis indicated that variations in each of the 37 features and for a given voxel size and bin size can be minimized. Conclusion: Our results provide guidance to selecting optimized features from 18F-FDG PET/CT studies. We were able to demonstrate that feature variations can be minimized for selected image parameters and imaging systems. These results can help imaging specialists and feature engineers in increasing the quality of future radiomics studies involving PET/CT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.