Abstract

We have developed a protocol to produce large quantities of high purity myristoylated and non-myristoylated neuronal calcium sensor 1 (NCS-1) protein. NCS-1 is a member of the neuronal calcium sensor (NCS) family and plays an important role in modulating G-protein signaling and exocytosis pathways in cells. Many of these functions are calcium-dependent and require NCS-1 to be modified with an N-terminal myristoyl moiety. In our system, a C-terminally 6× His-tagged variant of NCS-1 was co-expressed with yeast N-myristoyltransferase (NMT) in ZYP-5052 auto-induction media supplemented with sodium myristate (100–200 μM). With optimized growth conditions and a high capacity metal affinity purification scheme, >50 mg of homogenous myristoylated NCS-1 is obtained from 1 L of culture in a single step. The properties of the C-terminally tagged NCS-1 variants are indistinguishable from those reported for untagged NCS-1. Using this system, we have also isolated and characterized mutant NCS-1 proteins that have attenuated (NCS-1 E120Q) and abrogated (NCS-1 ΔEF) ability to bind calcium. The large quantities of NCS-1 proteins isolated from small culture volumes of auto-inducible media will provide the necessary reagents for further biochemical and structural characterization. The affinity tag at the C-terminus of the protein provides a suitable reagent for easily identifying binding partners of the various NCS-1 constructs. Additionally, this method could be used to produce other recombinant proteins of the NCS family, and may be extended to express and isolate myristoylated variants of other proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.