Abstract

Microwave-induced thermoacoustic imaging (M-TAI) allows the visualization of macroscopic and microscopic structures of bio-tissues. However, it suffers from severe inherent artifacts that might misguide the subsequent diagnostics and treatments of diseases. To overcome this limitation, we propose an optimized excitation strategy. In detail, the strategy integrates dynamically compound specific absorption rate (SAR) and co-planar configuration of polarization state, incident wave vector and imaging plane. Starting from the theoretical analysis, we interpret the underlying mechanism supporting the superiority of the optimized excitation strategy to achieve an effect equivalent to homogenizing the deposited electromagnetic energy in bio-tissues. The following numerical simulations demonstrate that the strategy enables better preservation of the conductivity weighting of samples while increasing Pearson correlation coefficient. Furthermore, the in vitro and in vivo M-TAI experiments validate the effectiveness and robustness of this optimized excitation strategy in artifact suppression, allowing the simultaneous identification of both boundary and inside fine structures within bio-tissues. All the results suggest that the optimized excitation strategy can be expanded to diverse scenarios, inspiring more suitable strategies that remarkably suppress the inherent artifacts in M-TAI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.