Abstract

The estimation of energy loss rate dE/dx for charged particles in tracking detectors using energy deposit measurements is studied. The truncated mean method is generalized to the weighted mean of the measurements. The weights are optimized for better particle separation in the energy loss rate variable, for arithmetic and geometric means, using a detailed simulation. The obtained weights are rather independent of particle momentum and track segment length. Their values are connected to the form of the corresponding energy deposit distribution, allowing for a simple universal description as a function of the number of measured track segments. While for semiconductor detectors the weighted mean estimator may be further improved with maximum likelihood methods, for gaseous detectors the (0%,55%) truncation already gives excellent results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.