Abstract
Perovskite manganites Lax(Ca1-ySry)1-xMnO3 have conspicuous electrical transport properties used for the application of uncooled bolometers. Thus, considerable attention has paid to the researches on electrical transport properties of Lax(Ca1-ySry)1-xMnO3. Temperature coefficient of resistivity (TCR) and the corresponding peak temperature (Tk) are crucial parameters for uncooled bolometers. Optimal La0.7Ca0.18Sr0.12MnO3 (LCSMO) films with highly oriented growth were prepared on (00l) LaAlO3 substrate at different sintering temperature (Ts) using a facile sol-gel spin coating method. Based on the analysis of microstructure, ionic valence, surface morphology and electrical transport properties, LCSMO films exhibit high crystallinity and large room-temperature TCR at higher Ts. Theoretical Curie temperature and the coupling of the electron lattice weaken gradually with the increase in Ts, which is the dominant factor for the optimization of electrical transport properties. Additionally, the results suggest that the active energy and theoretical Curie temperature play a crucial role in adjusting TCR and Tk. With the increase in Ts, the former increases while the latter decreased, resulting in a high TCR value (12.10%/K) at room temperature (297.38 K). The peak TCR value of LCSMO sintered at 1673 K is about 25% higher than that of the film sintered at 1473 K. The resulting LCSMO films demonstrate great potential for application in uncooled bolometers. Further theoretical basis on the effects of Ts on electrical transport properties was provided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.