Abstract

Lytic bacteriophages, viruses that lyse (kill) bacteria, hold great promise for treating infections, including wound infections caused by antimicrobial-resistant Pseudomonas aeruginosa. However, the optimal dosing and delivery strategies for phage therapy remain unclear. In a mouse wound infection model, we investigated the impact of dose, frequency, and administration route on the efficacy of phage therapy. We find that topical but not intravenous delivery is effective in this model. High-doses of phage reduces bacterial burden more effectively than low-doses, and repeated dosing achieves the highest eradication rates. Building on these insights, we developed "HydroPhage", a hyaluronan-based hydrogel system that uses dynamic covalent crosslinking to deliver high-titre phages over one week. HydroPhage eradicates infections five times more effectively than intravenous injection. We conclude that hydrogel-based sustained phage delivery enhances the efficacy of phage therapy and offers a practical, well-tolerated option for topical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.