Abstract

The roll-to-roll printing production process for hybrid organic-inorganic perovskite solar cells (PSCs) demands thick and high-performance solution-based diffusion blocking layers. Inverted (p-i-n) PSCs usually incorporate solution-processed PC70BM as the electron-transporting layer (ETL), which offers good electron charge extraction and passivation of the perovskite active layer grain boundaries. Thick fullerene diffusion blocking layers could benefit the long-term lifetime performance of inverted PSCs. However, the low conductivity of PC70BM significantly limits the thickness of the PC70BM buffer layer for optimized PSC performance. In this work, we show that by applying just enough N-DMBI doping principle, we can maintain the power conversion efficiency (PCE) of inverted PSCs with a thick (200 nm) PC70BM diffusion blocking layer. To better understand the origin of an optimal doping level, we combined the experimental results with simulations adapted to the PSCs reported here. Importantly, just enough 0.3% wt N-DMBI-doped 200 nm PC70BM diffusion blocking layer-based inverted PCSs retain a high thermal stability at 60 °C of up to 1000 h without sacrificing their PCE photovoltaic parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.