Abstract

Nanoparticle multilayer substrates usually exhibit excellent SERS activity due to multi-dimensional plasmon coupling. However, simply increasing the layers will lead to several problems, such as complex manufacturing procedures, reduced uniformity and poor reproducibility. In this paper, the local electric field (LEF) characteristics of a Ag nanoparticle (AgNP) multilayer were systematically studied through finite element simulations. We found that, on the glass support, the LEF intensity improved with the increase in the layers of AgNPs. However, the maximum LEF could be obtained with only two layers of AgNPs on the Au film support, and it was much stronger than the optimal value of the former. To verify the simulation results, we have successfully prepared one to four layers of AgNPs on both supports with a liquid-liquid interface self-assembly method, and carried out a series of SERS measurements. The experimental results were in good agreement with the simulations. Finally, the optimized SERS substrate, the 2-AgNP@Au film, showed an ultra-high SERS sensitivity, along with an excellent signal uniformity, which had a detection ability of 1 × 10-15 M for the Rhodamine 6G (R6G) and a relative standard deviation (RSD) of 11% for the signal intensity. Our study provides important theoretical guidance and a technical basis for the optimized design and application of high-performance SERS substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.