Abstract

CANDLE (Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor) reactors have been intensively researched in the last decades [1–6]. Research shows that this kind of reactor is highly economical, safe and efficiently saves resources, thus extending large scale fission nuclear energy utilization for thousands of years, benefitting the whole of society. For many developing countries with a large population and high energy demands, such as China and India, middle (1000 MWth) and large (2000 MWth) CANDLE fast reactors are obviously more suitable than small reactors [2]. In this paper, the middle and large CANDLE reactors are investigated with U-Pu and combined ThU-UPu fuel cycles, aiming to utilize the abundant thorium resources and optimize the radial power distribution. To achieve these design purposes, the present designs were utilized, simply dividing the core into two fuel regions in the radial direction. The less active fuel, such as thorium or natural uranium, was loaded in the inner core region and the fuel with low-level enrichment, e.g. 2.0% enriched uranium, was loaded in the outer core region. By this simple core configuration and fuel setting, rather than using a complicated method, we can obtain the desired middle and large CANDLE fast cores with reasonable core geometry and thermal hydraulic parameters that perform safely and economically; as is to be expected from CANDLE. To assist in understanding the CANDLE reactor’s attributes, analysis and discussion of the calculation results achieved are provided.

Highlights

  • The development of human society and the growth of the global population cause huge energy demands and various environmental problems

  • Different from the 1000 MWth design, the inner region is composed of the fuel assemblies containing thorium, while the outer region is filled with the uranium fuel assembly at an enrichment of 2.4%

  • The CANDLE reactors with a power level higher than 2000 MWth are suitable for most crowded places in the world, satisfying the rapid increase of energy demands

Read more

Summary

Introduction

The development of human society and the growth of the global population cause huge energy demands and various environmental problems. The reality of this and current technical capabilities leave human society with only one choice—nuclear fission energy—as fusion energy is not yet ready for large scale commercial utilization. In the past half century, hundreds of thermal spectrum reactors consumed too much of our precious uranium resources and many reactors of this kind will still be built in the future. How to solve problems such as the efficiency of utilizing the nuclear resources and the recycling of the spent fuel from light water reactors, have become the key points for the sustainable development of fission energy utilization. Intensive and comprehensive research over the past decade already demonstrates that a CANDLE reactor maintains a lot of attractive merits [1,2,3,4,5,6], summarized in the following

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.