Abstract

The threats and challenges of unmanned aerial vehicle (UAV) invasion defense due to rapid UAV development have attracted increased attention recently. One of the important UAV invasion defense methods is radar network detection. To form a tight and reliable radar surveillance network with limited resources, it is essential to investigate optimized radar network deployment. This optimization problem is difficult to solve due to its nonlinear features and strong coupling of multiple constraints. To address these issues, we propose an improved firefly algorithm that employs a neighborhood learning strategy with a feedback mechanism and chaotic local search by elite fireflies to obtain a trade-off between exploration and exploitation abilities. Moreover, a chaotic sequence is used to generate initial firefly positions to improve population diversity. Experiments have been conducted on 12 famous benchmark functions and in a classical radar deployment scenario. Results indicate that our approach achieves much better performance than the classical firefly algorithm (FA) and four recently proposed FA variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.