Abstract

Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME) are vision related complications prominently found in diabetic patients. The early identification of DR/DME grades facilitates the devising of an appropriate treatment plan, which ultimately prevents the probability of visual impairment in more than 90% of diabetic patients. Thereby, an automatic DR/DME grade detection approach is proposed in this work by utilizing image processing. In this work, the retinal fundus image provided as input is pre-processed using Discrete Wavelet Transform (DWT) with the aim of enhancing its visual quality. The precise detection of DR/DME is supported further with the application of suitable Artificial Neural Network (ANN) based segmentation technique. The segmented images are subsequently subjected to feature extraction using Adaptive Gabor Filter (AGF) and the feature selection using Random Forest (RF) technique. The former has excellent retinal vein recognition capability, while the latter has exceptional generalization capability. The RF approach also assists with the improvement of classification accuracy of Deep Convolutional Neural Network (CNN) classifier. Moreover, Chicken Swarm Algorithm (CSA) is used for further enhancing the classifier performance by optimizing the weights of both convolution and fully connected layer. The entire approach is validated for its accuracy in determination of grades of DR/DME using MATLAB software. The proposed DR/DME grade detection approach displays an excellent accuracy of 97.91%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.