Abstract

Using explosive material to fragment rock masses is a common and economical method in surface mines. Nevertheless, this method can lead to some environmental problems in the surrounding regions. Flyrock is one of the most dangerous effects induced by blasting which needs to be estimated to reduce the potential risk of damage. In other words, the minimization of flyrock can lead to sustainability of surroundings environment in blasting sites. To this aim, the present study develops several new hybrid models for predicting flyrock. The proposed models were based on a cascaded forward neural network (CFNN) trained by the Levenberg–Marquardt algorithm (LMA), and also the combination of least squares support vector machine (LSSVM) and three optimization algorithms, i.e., gravitational search algorithm (GSA), whale optimization algorithm (WOA), and artificial bee colony (ABC). To construct the models, a database collected from three granite quarry sites, located in Malaysia, was applied. The prediction values were then checked and evaluated using some statistical criteria. The results revealed that all proposed models were acceptable in predicting the flyrock. Among them, the LSSVM-WOA was a more robust model than the others and predicted the flyrock values with a high degree of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.