Abstract

Hydrogen refueling stations (HRSs) are critical for the popularity of hydrogen vehicles (fuel cell electric vehicles—FCEVs). However, due to high installation investment and operating costs, the proliferation of HRSs is difficult. This paper studies HRSs with on-site electrolytic production and hydrogen storage devices and proposes an optimization method to minimize the total costs including both installation investment and operating costs (OPT-ISL method). Moreover, to acquire the optimization constraints of hydrogen demand, this paper creatively develops a refueling behavior simulation method for different kinds of FCEVs and proposes a hydrogen-demand estimation model to forecast the demand with hourly intervals for HRS. The Jensen–Shannon divergence is applied to verify the accuracy of the hydrogen-demand estimation. The result: 0.029 is much smaller than that of the estimation method in reference. Based on the estimation results and peak-valley prices of electricity from the grid, a daily hydrogen generation plan is obtained, as well as the optimal capacities of electrolyzers and storage devices. As for the whole costs, compared with previous configuration methods that only consider investment costs or operating costs, the proposed OPT-ISL method has the least, 8.1 and 10.5% less, respectively. Moreover, the proposed OPT-ISL method shortens the break-even time for HRS from 11.1 years to 7.8 years, a decrease of 29.7%, so that the HRS could recover its costs in less time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call