Abstract
The present article deals with the optimized processing conditions leading to the highest density of Si nanoclusters which play the role of sensitizing centers for the nearby Er ions within a silica matrix. The layers were obtained by reactive magnetron sputtering under a plasma of Ar mixed to different rates of hydrogen, and were subsequently annealed at various temperatures. The increase of the dilution degree of the Ar plasma with hydrogen was found to multiply the nucleation sites whose density foreshadows that of the Si nanoclusters formed upon annealing. Both hydrogen content and annealing temperature govern the growth of the clusters. The maximum density of efficient sensitizing centers was obtained for hydrogen rate in the plasma of 50% and annealing at 900 °C. This has directly led to the enhancement of the coupling rate between the Si nanoclusters and the Er ions, as reflected by the ten times increase of the proportion of optically active ions, compared to that for standard conditions. In parallel, the lifetime emission of the active Er ions was found to continuously improve with the annealing temperature and has reached values exceeding 7 ms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.