Abstract

AbstractEmbedded systems, including the Internet of things (IoT), play a crucial role in the functioning of critical infrastructure. However, these devices face significant challenges such as memory footprint, technical challenges, privacy concerns, performance trade-offs and vulnerability to cyber-attacks. One approach to address these concerns is minimising computational overhead and adopting lightweight intrusion detection techniques. In this study, we propose a highly efficient model called optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in IoT environments. The proposed OCFSDA model incorporates feature selection, data compression, pruning, and deparameterization. We deployed the model on a Raspberry Pi4 using the TFLite interpreter by leveraging optimisation and inferencing with semi-supervised learning. Using the MQTT-IoT-IDS2020 and CIC-IDS2017 datasets, our experimental results demonstrate a remarkable reduction in the computation cost in terms of time and memory use. Notably, the model achieved an overall average accuracies of 99% and 97%, along with comparable performance on other important metrics such as precision, recall, and F1-score. Moreover, the model accomplished the classification tasks within 0.30 and 0.12 s using only 2KB of memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call