Abstract

BackgroundNovel tissue clearing technologies have, for the first time, made it possible to study intact tissue samples. This approach provides a tool for further clarifying findings from animal models of schizophrenia by studying parvalbumin-positive (PV+) interneuron density from a 3D perspective. New methodThis study has developed an optimised CLARITY protocol, including an improved electrophoretic tissue clearing (ETC) chamber, an evaluation of antibody diffusion into cleared tissue slices, and a computational method for detecting PV+ interneurons in 3D. ResultsA reduced PV+ interneuron density was found in both prelimbic and motor cortex regions of the Df(h15q13)/+ mice, while no changes were observed in the Df(h22q11)/+ mice. Comparison with existing methodThe developed ETC chamber enables tissue clearing of variable tissue sizes while minimizing the resistance. It was found that a high concentration of primary and secondary antibodies were necessary for sufficient antibody staining of PV+ interneurons. Additionally, the developed computational method showed improved detection rates of interneurons compared to non-processed image stacks. ConclusionOur optimization of the CLARITY technology and automated 3D counting of cells were found to be useful for quantification of PV+ interneuron density. The results may provide insight into understanding the pathophysiology underlying the phenotype observed in Df(h15q13)/+ mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call