Abstract

In this paper, a comprehensive investigation of the capacitive active ripple compensation (ARC) techniques is made to conclude which one is optimal to be used in on-board chargers of electric vehicles. Crucial aspects in such an application are: lifetime, volumetric and specific power density (including components’ size and the needed cooling solution), and overall efficiency of the charger. As presented in this paper, all capacitive ARC topologies (buck, boost, and buck–boost) have successfully diverted the low-frequency ripple from the dc side with a maximized power density. The ARC circuit consists of two additional switches, a smoothing auxiliary inductor, and a storage auxiliary capacitor. Finally, the buck capacitive ARC topology proves to be the optimal ARC technique for on-board chargers because of its maximal power density, minimal loss behavior and voltage stress, and long lifetime capability as it requires a downsized capacitance to the extent, where film capacitors or ceramic capacitors can replace the normally used bulky electrolytic capacitors. The performance of the three capacitive ARC techniques is proved by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.