Abstract

Regarding the roll forming of contour plates, traditional roll forming techniques often result in peak longitudinal strain during the forming process, which causes defects such as longitudinal bowing and springback. The bending angle, sheet thickness, and the number of forming passes are all important process parameters that cause the aforementioned problems. This study proposes quantifying the projection track regarding the edge of the profile section in the horizontal plane that follows a cubic curve and uses the curve function to reasonably distribute the bending angle to study the maximum forming strain and the average strain for all passes of the sheet between the forming passes. Simultaneously, the influence law of the sheet thickness and number of forming passes was studied. Based on theoretical simulation and experimental verification, the optimal bending angle distribution function is A1: y = x3 + x2 + x. When the thickness of the sheet is 1.5 mm, both the maximum forming strain between the passes during roll forming and the average strain of all passes are the smallest, which are 3.91 and 0.609%, respectively. Moreover, with the increase in the number of passes, the longitudinal bowing and springback decrease to varying degrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.