Abstract

A Wireless Sensor Network (WSN) is a group of autonomous sensors geographically distributed for environmental monitoring and tracking purposes. Since the sensors in the WSN have limited battery capacity, the energy efficiency is considered a challenging task because of redundant data transmission and inappropriate routing paths. In this research, a Quasi-Oppositional Learning (QOL)-based African Vulture Optimization Algorithm (AVOA), referred to as QAVOA, is proposed for an effective data fusion and cluster-based routing in a WSN. The QAVOA-based Back Propagation Neural Network (BPNN) is developed to optimize the weights and threshold coefficients for removing the redundant information and decreasing the amount of transmitted data over the network. Moreover, the QAVOA-based optimal Cluster Head Node (CHN) selection and route discovery are carried out for performing reliable data transmission. An elimination of redundant data during data fusion and optimum shortest path discovery using the proposed QAVOA-BPNN is used to minimize the energy usage of the nodes, which helps to increase the life expectancy. The QAVOA-BPNN is analyzed by using the energy consumption, life expectancy, throughput, End to End Delay (EED), Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR). The existing approaches such as Cross-Layer-based Harris-Hawks-Optimization (CL-HHO) and Improved Sparrow Search using Differential Evolution (ISSDE) are used to evaluate the QAVOA-BPNN method. The life expectancy of QAVOA-BPNN for 500 nodes is 4820 rounds, which is high when compared to the CL-HHO and ISSDE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call