Abstract

Recently, we presented a Green's function approach for the calculation of analytic continuum electrostatic solvation forces based on numerical solutions of the finite-difference Poisson–Botzmann (FDPB) equation [Im et al., Comp. Phys. Comm. 111 (1998) 59]. In this treatment the analytic forces were explicitly defined as the first derivative of the FDPB continuum electrostatic free energy with respect to the coordinates of the solute atoms. A smooth intermediate region for the solute–solvent dielectric boundary needed to be introduced to avoid abrupt discontinuous variations in the solvation free energy and forces as a function of the atomic positions. In the present paper we extend the set of optimized radii, which was previously parametrized from molecular dynamics free energy simulations of the 20 standard amino acids with explicit solvent molecules [Nina et al., J. Phys. Chem. 101 (1997) 5239], to yield accurate solvation free energy by taking the influence of the smoothed dielectric region into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.