Abstract

Mutations in the oncogenes KRAS and BRAF have been identified as prognostic factors in patients with colorectal diseases and as predictors of negative outcome in epidermal growth factor receptor-targeted therapies. Therefore, accurate mutation detection in both genes, KRAS and BRAF, is of increasing clinical relevance. We aimed at optimizing allele-specific real-time PCR assays for the detection of common mutations in KRAS and the BRAF Val600Glu mutation using allele-specific PCR primers for allelic discrimination and probes (TaqMan) for quantification. Each reaction mix contains a co-amplified internal control to exclude false-negative results. Allele-specific real-time PCR assays were evaluated on plasmid model systems providing a mutation detection limit of 10 copies of mutant DNA in proportions as low as 1% of the total DNA. Furthermore, we analyzed 125 DNA samples prepared from archived, formalin-fixed, paraffin-embedded colorectal carcinomas and compared results with those obtained from direct-sequence analysis. All mutations determined by sequence analysis could be recovered by allele-specific PCR assays. In addition, allele-specific PCR assays clearly identified three additional samples affected by a mutation. We propose these allele-specific real-time PCR assays as a low-cost and fast diagnostic tool for accurate detection of KRAS and BRAF mutations that can be applied to clinical samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.