Abstract

Deformation of ground during tunnelling projects is one of the complex issues that is required to be monitored carefully to avoid the unexpected damages and human losses. Accurate prediction of ground settlement (GS) is a crucial concern for tunnelling problems, and the adequate predictive model can be a vital tool for tunnel designers to simulate the ground settlement accurately. This study proposes relatively new hybrid artificial intelligence (AI) models to predict the ground settlement of earth pressure balance (EPB) shield tunnelling in the Bangkok MRTA project. The predictive models were various nature-inspired frameworks, such as differential evolution (DE), particle swarm optimization (PSO), genetic algorithm (GA), and ant colony optimizer (ACO) to tune the adaptive neuro-fuzzy inference system (ANFIS). To obtain the accurate and reliable results, the modeling procedure is established based on four different dataset scenarios including (i) preprocessed and normalized (PPN), (ii) preprocessed and nonnormalized (PPNN), (iii) non-preprocessed and normalized (NPN), and (iv) non-preprocessed and nonnormalized (NPNN) datasets. Results indicated that PPN dataset scenario significantly affected the prediction models in terms of their perdition accuracy. Among all the developed hybrid models, ANOFS-PSO model achieved the best predictability performance. In quantitative terms, PPN-ANFIS-PSO model attained the least root mean square error value (RMSE) of 7.98 and a correlation coefficient value (CC) of 0.83. Overall, the attained results confirmed the superiority of the explored hybrid AI models as robust predictive model for ground settlement of earth pressure balance (EPB) shield tunnelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.