Abstract
Environmental issues and the depletion of worldwide crude oil sources have developed the requirement for an alternative fuel to power internal combustion engines. Vegetable oil, waste cooking oil and biodiesel are all renewable, environmentally sustainable and compatible with current Compression Ignition (CI) engines with little to no engine modification necessary. These fuels however have a higher viscosity than conventional petro-diesel and may be referred to as Higher Viscous Fuels (HVF). HVF have reduced in-cylinder combustion efficiency when compared with petro-diesel which reduces the engine performance in terms of output power, torque and fuel efficiency. A possible solution to the reduced efficiency is through the use of a Guide Vane Swirl and Tumble Device (GVSTD). This device when installed in front of the air intake manifold may produce improved air flow characteristics. This improves the efficiency of the evaporation processes and air-fuel mixing and therefore improves overall combustion efficiency. The effect of GVSTDs on in-cylinder air flow was studied using 3D Internal Combustion (IC) engine simulation under motored engine conditions. This was done using ANSYS-CFX. The base model engine was adapted from the Hino W04D model CI engine. The model throughout all simulations was run at a constant speed of 1500 rpm. There are four parameters to consider for GVSTD models; vane length, vane height, vane angle and the number of vanes. For the purpose of this study, the vane height, vane angle and the number of vanes were maintained as constants leaving the vane length as the variable parameter. 11 GVSTD models were simulated each varying from 1.5 to 4.5 times the radius of the intake runner (R) in 0.3R increments. To analyze the air-flow characteristics, the maximum in-cylinder pressure, Turbulence Kinetic Energy (TKE) and velocity were measured. It was found that for the constant values for vane height, vane angle and the number of vanes of 0.2R, 35° twist angle and 4 perpendicularly-arranged respectively, the in-cylinder pressure, TKE and velocity were optimum for the vane lengths of 3.6 to 3.9 times R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.