Abstract

Flow field distribution plays a vital role in electrochemical machining (ECM) because it can directly affect the machining stability and accuracy of ECM. In counter-rotating electrochemical machining (CRECM), the uniformity of the flow field is difficult to control due to the complicated and changeable flow channel shape. Through the simulation of the conventional lateral fluid flow pattern, it is found that the complexity of the flow channel with grid structures makes the flow field of machining area strongly disordered, which leads to the low velocity zones and dead zones. Based on the simulation results, a new electrolyte flow pattern with an auxiliary internal fluid is proposed, which can remarkably improve the uniformity of flow field by apply supplementary electrolyte to the machining area. Experimental results show that the new flow pattern effectively improves the machining stability of CRECM, and enhances the machining precision of grid structures, the sidewall taper angle is reduced from 29.3° to 7.7°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call