Abstract

This paper is devoted to develop an efficient computational procedure for the level set-based topological design of heat conducting fields. Firstly, the level set model with a distance-suppression scheme (generalized Hamilton–Jacobi equation) is used to implicitly represent boundary of heat conductive material so that the periodical re-initialization can be avoided. Secondly, after demonstrating that the finite element thermal analysis takes the major portion of the total computational time, we present a weighting based velocity constructing method inspired from the conjugate gradient method to avoid performing finite element thermal analysis for solving the generalized Hamilton–Jacobi equation. Thirdly, a velocity renewing procedure and criteria for stopping the weighting method are developed for insuring the stability and a quick convergence. Finally, two dimensional topology optimization results of heat conduction problem under both single and multiple load cases are presented to demonstrate the validity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.