Abstract

BackgroundMulti-Agent Simulation is an essential technique for exploring complex systems. In research of contagious diseases, it is widely exploited to analyze their spread mechanisms, especially for preventing COVID-19. Nowadays, transmission dynamics and interventions of COVID-19 have been elaborately established by this method, but its computation performance is seldomly concerned. As it usually suffers from inadequate CPU utilization and poor data locality, optimizing the performance is challenging and important for real-time analyzing its spreading.ResultsThis paper explores approaches to optimize multi-agent simulation for COVID-19 disease. The focus of this work is on the algorithm and data structure designs for improving performance, as well as its parallelization strategies. We propose two successive methods to optimize the computation. We construct a case-focused iteration algorithm to improve data locality, and propose a fast data-mapping scheme called hierarchical hash table to accelerate hash operations. As a result, The case-focused method degrades sim 90 % cache references and achieves times 4.3 speedup. Hierarchical hash table can further boost computation speed by 47%. And parallel implementation with 20 threads on CPU achieves times 80 speedup consequently.ConclusionsIn this work, we propose optimizations for multi-agent simulation of COVID-19 transmission from aspects of algorithm and data structure. Benefit from improvement of locality and multi-thread implementation, our methods can significantly accelerate the simulation computation. It is promising in supporting real-time prevention of COVID-19 and other infectious diseases in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.