Abstract

With the integration of mobility and manipulation, mobile manipulator constructed by mobile platform and manipulator has become a potential solution for the fields of industrial manufacturing and services. One of the key issues in utilizing the mobile manipulator is the motion planning, i.e., finding a feasible and efficient trajectory for operation. Compared with the traditional motion planning methods on mobile robot and fixed manipulator, the motion planning of mobile manipulator is more challenging due to the high degree of kinematic redundancy from the coupling of mobile platform and manipulator. And the optimization problem becomes more complicated by the integration of the high degree of kinematic redundancy, obstacle avoidance, constraints and task requirements. To address the issue, the integrated kinematic model is proposed, including mobile platform, manipulator and their coupling property. Subsequently, the coordinated motion planning for mobile manipulator to generate a collision free trajectories from the initial state to target state is developed, where the trajectories of mobile platform and manipulator are planned simultaneously by optimization-based method. The proposed motion planning algorithm is implemented and tested in various environments. Simulation and experiment results demonstrate the good effectiveness of the proposed motion planning algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.