Abstract

The design of constrained, “plant-friendly„ multisine input signals that optimize a geometric discrepancy criterion arising from Weyl's Theorem is examined in this paper. Such signals are meaningful for data-centric estimation methods, where uniform coverage of the output state-space is critical. The usefulness of this problem formulation is demonstrated by applying it to a linear example and to the nonlinear, highly interactive distillation column model developed by Weischedel and McAvoy (1980). The optimization problem includes a search for both the Fourier coefficients and phases in the multisine signal, resulting in an uniformly distributed output signal displaying a desirable balance between high and low gain directions. The solution involves very little user intervention (which enhances its practical usefulness) and has significant benefits compared to multisine signals that minimize crest factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.