Abstract
Over the past few years, simulating crowds in virtual environments has become an important tool to give life to virtual scenes; be it movies, games, training applications, etc. An important part of crowd simulation is the way that people move from one place to another. This paper concentrates on improving the crowd patches approach proposed by Yersin et al. [Yersin et al. 2009] that aims on efficiently animating ambient crowds in a scene. This method is based on the construction of animation blocks (called patches) concatenated together under some constraints to create larger and richer animations with limited run-time cost. Specifically, an optimization based approach to generate smooth collision free trajectories for crowd patches is proposed. The contributions of this work to the crowd patches framework are threefold; firstly a method to match the end points of trajectories based on the Gale-Shapley algorithm [Gale and Shapley 1962] is proposed that takes into account preferred velocities and space coverage, secondly an improved algorithm for collision avoidance is proposed that gives natural appearance to trajectories and finally a cubic spline approach is used to smooth out generated trajectories. We demonstrate several examples of patches and how they were improved by the proposed method, some limitations and directions for future improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.