Abstract
Abstract Although a variety of algorithms for discrete nonlinear programming have been proposed, the solution of discrete optimization problems is far from mature relative to continuous optimization. This paper focuses on the recursive quadratic programming strategy which has proven to be efficient and robust for continuous optimization. The procedure is adapted to handle problems of mixed discrete nonlinear programming and utilizes the analytical properties of functions and constraints. This first part of the paper considers definitions, concepts and convergence criteria. Part II includes the development and testing of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.