Abstract

Chance constraints provide a principled framework to mitigate the risk of high-impact extreme events by modifying the controllable properties of a system. The low probability and rare occurrence of such events, however, impose severe sampling and computational requirements on classical solution methods that render them impractical. This work proposes a novel sampling-free method for solving rare chance constrained optimization problems affected by uncertainties that follow general Gaussian mixture distributions. By integrating modern developments in large deviation theory with tools from convex analysis and bilevel optimization, we propose tractable formulations that can be solved by off-the-shelf solvers. Our formulations enjoy several advantages compared to classical methods: their size and complexity is independent of event rarity, they do not require linearity or convexity assumptions on system constraints, and under easily verifiable conditions, serve as safe conservative approximations or asymptotically exact reformulations of the true problem. Computational experiments on linear, nonlinear and PDE-constrained problems from applications in portfolio management, structural engineering and fluid dynamics illustrate the broad applicability of our method and its advantages over classical sampling-based approaches in terms of both accuracy and efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.