Abstract

This paper presents the formulation and application of a strategy for the determination of an optimal trajectory for a multiple robotic configuration. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used as the optimization techniques and results obtained from them compared. First, the motivation for multiple robot control and the current state-of-art in the field of cooperating robots are briefly given. This is followed by a discussion of energy minimization techniques in the context of robotics, and finally, the principles of using genetic algorithms and simulated annealing as an optimization tool are included. The initial and final positions of the end effector are specified. Two cases, one of a single manipulator, and the other of two cooperating manipulators carrying a common payload illustrate the proposed approach. The GA and SA techniques identify the optimal trajectory based on minimum joint torque requirements. The simulations performed for both the cases show that although both the methods converge to the global minimum, the SA converges to solution faster than the GA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.